18kHz LDV in mecopoda elongata

Prof. Dr. Manuela Nowotny

Professor of Animal Physiology
18kHz LDV in mecopoda elongata
Image: Prof. Dr. Manuela Nowotny

Prof. Dr. M. Nowotny

Image: Anne Günther (University of Jena)

 

Contact

 

Prof. Dr. Manuela Nowotny

 

Institute for Zoology and Evolutionary Research
Erbertstrasse 1 (room 110)
07743 Jena
Germany

+49 3641 949 101
manuela.nowotny@uni-jena.de

Research Interest

 

Sensory Adaptations in the Animal Kingdom

Sensory organs enable us to discriminate environmental signals. It fascinates me how sensory organs can be highly specialized and detect only a small range of the environmental signals but still ensure the survival of the animal. The study of these adaptations enables us to gain knowledge about the perception in general and the regulation of behaviour in particular. My working group investigates functions and adaptations of insect and mammalian ears. Especially, my work with insects provides the potential for the study of natural diversity of mating behaviour and sensory adaptation.

diagramm kHz -> inner ear length (%)

Image: Prof. Dr. Manuela Nowotny

Evolution often leads to similar solutions - convergent evolution in hearing

To occupy different niches in an ecosystem, insects developed many different strategies to generate and percept acoustic signals. Recently, we discovered a tropical bushcricket that exhibits a sex-specific adaptation in their communication and ears (Scherberich et al., Current Biology 2016, see figure left). Unique in the animal kingdom, male bushcrickets of the species Ancylecha fenestrata have significant more sensory cells than females of the same species. Surprisingly, these additional cells in the male ears are used to over represent the area where the female call frequency is perceived. This phenomena of an auditory fovea was described so far only as an adaptation of pray (bats) and predator detection (mull) in mammals. 

difference between phase delay and no phase delay in sensory dendrite

Image: Prof. Dr. M. Nowotny

Processing of sensory information in the ear

Ears not simply detect environmental signals and translate these into a neuronal correlate. By the processing in the ear, signals important for the animal are amplified or filtered. I started my studies in hearing by the investigation of these amplification processes in the mammalian ear and discovered a mechanism of direct fluid coupling between outer and inner hair cells (Nowotny and Gummer, PNAS 2006). In my group we continue this type of studies in insects and revealed a biomechanical filter mechanisms, which are important for the channel gating (Hummel et al. J. Neurosci, 2016, see figure below). One other surprising finding was that bushcrickets use travelling waves for frequency discrimination (Palghat Udayashankar et al. 2012 and 2015, see movies). These waves are comparable (wave propagation velocity and wave length) to travelling waves found in mammals. 

Funding:
The project is funded by the Deutsche Forschungsgemeinschaft (NO 841/1-1 and NO 841/2-1). Additional funding was provided by the Jürgen Manchot foundation and Goethe University by the project "Nachwuchswissenschaftler/innen im Fokus" 

Inner Ear Damages and the Generation of Tinnitus

The emergence of tinnitus after acoustic overstimulation and damage to the inner ear is an enormous psychological burden for patients. Exact causes of the resulting phantom noise are largely unknown. We suspect one reason for the initiation of the development of tinnitus in the signal transduction process and routing in the inner ear. Our experiments include the examination of the shift from acute to chronic tinnitus after acoustic overstimulation by using the startle reflex response in gerbils, rats and mice. We explore for example the question how noise-induced hearing loss and plasticity related changes in the brain shape tinnitus characteristics and found that the perceived frequency of tinnitus depends on the bandwidth of the applied noise trauma and the repetition of noise trauma.

tinnitus risk after trauma repetition

Image: Prof. Dr. M. Nowotny

Funding:
The project is funded by the Deutsche Forschungsgemeinschaft (NO 841/4-1) and the Adolf-Messer Stiftungspreis 2009.

 

 

 

Five most important publications


Scherberich JExternal link, Hummel J, Schöneich SExternal linkNowotny MExternal link. Auditory fovea in the ear of a duetting katydid shows male-specific adaptation to the female call. Curr Biol. 26(23):R1222-R1223. doi link: https://doi.org/10.1016/j.cub.2016.10.035External link

Hummel J, Schöneich SExternal link, Kössl M, Scherberich JExternal link, Hedwig B, Prinz S, Nowotny MExternal link. Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes. J Neurosci. 36(8):2377-2382. doi link;: https://doi.org/10.1523/JNEUROSCI.3948-15.2016External link

Kiefer L, Schauen A, Abendroth S, Gaese BH, Nowotny M. (2015) Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience. 310: 176-187. https://doi.org/10.1016/j.neuroscience.2015.09.023External link

Palghat Udayashankar A.; Kössl M.; Nowotny M. (2012). In-vivo measurements of tonotopically ordered traveling waves. PLoS One. 7(2): e31008.https://doi.org/10.1371/journal.pone.0031008External link

Nowotny, M.; Gummer, A.W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci USA 103: 2120-2125. https://doi.org/10.1073/pnas.0511125103External link

Nonscientific outputExternal link

 

 

Publications

2024 - 2023
2022 - 2021 - 2020 - 2019 - 2017 - 2016 - 2015 - 2014
2013 - 2012 - 2011 - 2010 - 2009 - 2006 - 2003 - 2000

 

Year

Title

2024

 

2023

del Rio J, Taszus R , Nowotny M & Stoessel A (2023) Variations in cochlea shape reveal different evolutionary adaptations in primates and rodents. Scientific Reports | 13:2235 DOI: https://doi.org/10.1038/s41598-023-29478-zwww.nature.com/scientificreportsExternal link

2022

Kiefer L, Koch L, Gaese BH Nowotny, M (2022) Comparing electrophysiological effects of traumatic noise exposure between rodents. [PDFpdf, 7 mb · de] J Neurophysiol 127-2 DOI: 10.1152/jn.00081.2021External link

Sanaom TM, Oberst S, Richter A, Lai JCS, Saadatfar M, Nowotny M, Evans TA (2022). Low radiodensity μCT scans to reveal detailed morphology of the termite leg and its subgenual organ. Arthropod Structure and Development. doi:10.1016/j.asd.2022.101191External link.

Hubancheva A, Senderov V, Nowotny M, Schöneich S, Goerlitz H (2022). Bush-crickets show lifelong flexibility in courtship signals to match predation threat. Authorea. DOI: 10.22541/au.165167283.37444741/v2External link.

2021

Vavakou A, Scherberich J, Nowotny M, van der Heijden (2021) Tuned vibration modes in a miniature hearing organ - insights from the bushcricket. Proc Natl Acad Sci U S A. 118(39):e2105234118. doi: 10.1073/pnas.2105234118External link.

Warren B, Nowotny, M (2021) Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Front. Ecol. Evol. 9:667218. doi: 10.3389/fevo.2021.667218External link

Koch L, Gaese BH, Nowotny, M (2021) Strain comparison in rats differentiates strain-specific from more general correlates of noise-induced hearing loss and tinnitus. [PDFpdf, 1 mb · de] JARO. doi.org/10.1007/s10162-021-00822-2.  https://link.springer.com/content/pdf/10.1007/s10162-021-00822-2.pdfExternal link.

Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny, M Blickhan, R (2021) Comparative analysis of maintaining stability during inclined locomotion in desert and wood ant. J Exp Biol 224 (15): jeb242677External link.

2020

Scherberich JExternal linkTaszus RExternal link, Stoessel A, Nowotny, MExternal link (2020). Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica. Proc Biol Sci. 2020 Jun 24;287(1929):20200909. doi:https://doi.org/10.1098/rspb.2020.0909External link

2019

Olson ES, Nowotny, MExternal link (2019) Experimental and Theoretical Explorations of Traveling Waves and Tuning in the Bushcricket Ear. Biophys J. 2019 Jan 8;116(1):165-177. https://doi.org/10.1016/j.bpj.2018.11.3124External link

2017

Scherberich JExternal link, Hummel J, Schöneich SExternal linkNowotny MExternal link. Functional basis of the sexual dimorphism in the auditory fovea of the duetting bushcricket Ancylecha fenestrata. Proc Biol Sci. 284(1865). https://doi.org/10.1098/rspb.2017.1426External link

Nowotny MExternal link, Kiefer L, Andre D, Fabrizius A, Hankeln T, Reuss S. Hearing without neuroglobin. Neuroscience. 366:138-148. doi link: 10.1016/j.neuroscience.2017.10.010External link

Hummel J, Kössl M, Nowotny MExternal link. Morphological basis for a tonotopic design of an insect ear. J Comp Neurol. 525(10):2443-2455. https://doi.org/10.1002/cne.24218External link

Kiefer, L., Andre, D., Hankeln, T., Reuss, S. und Nowotny, M. Neuroglobin is important for the regeneration of auditory processing after acoustic trauma. 40th MidWinter Meeting of the Association for Research in Otolaryngology 

2016

Hummel J, Schöneich S, Kössl M, Scherberich J, Hedwig B, Prinz S, Nowotny M. Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes. J Neurosci. 36(8):2377-2382.

Steube N, Nowotny M, Pilz PK, Gaese BH. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils. Front Behav Neurosci.External link 2016 Jun 30;10:133. doi: 10.3389/fnbeh.2016.00133. eCollection 2016.

Scherberich J, Hummel J, Schöneich S, Nowotny M. Auditory fovea in the ear of a duetting katydid shows male-specific adaptation to the female call. Curr Biol. 26(23):R1222-R1223. 

2015

Kiefer L, Schauen A, Abendroth S, Gaese BH, Nowotny M. Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience. 310: 176-187.

Hummel J, Schöneich S, Hedwig B, Nowotny M. Mechanical and electrical tuning in a tonotopical organized ear. In: Mechanics of Hearing. Corey D.P. and Karavitaki K.D. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, in press.

Nowotny M., Hummel J., Kössl M., Palgath Udajashankar A. Mechanical investigations of sound-induced responses in a simple ear. In: Mechanics of Hearing. Corey D.P. and Karavitaki K.D. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong. in press.

2014

Hummel J., Wolf K., Kössl M., Nowotny M. Processing of simple and complex acoustic signals in a tonotopically organized ear. Proc Biol Sci. 281(1796): 20141872.

Palgath Udajashankar A., Kössl M., Nowotny M. Traveling wave energy is lateralized in the hearing organ of bushcrickets. Plos One 9(1): e86090.

Stumpner A., Nowotny M. Neural processing in the bushcricket auditory pathway. In: Topics of Acoustic Communication in Insects. Hedwig B (Ed.) Springer-Verlag, Berlin, Heidelberg. Volume 1, 2014, pp 143-166. 

Möckel D., Nowotny M., Kössl M. Mechanical basis of otoacoustic emissions in tympanal hearing organs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 200(7):681-691. 

2013

Mora E C; Cobo-Cuan A; Macías F; Pérez M; Nowotny MKössl M. Mechanical tuning of the moth ear: distortion-product otoacoustic emissions and tympanal vibrations. J Exp Biol.216:3863-3872.

2012

Palghat Udayashankar A.; Kössl M.; Nowotny M. In-vivo measurements of tonotopically ordered traveling waves. PLoS One. 7(2): e31008.

Möckel, D.; Lang, J.; Kössl, M.; Nowotny, M. Temperature-dependence of DPOAEs in tympanal organs. J Exp Biol accepted.

2011

Nowotny M.; Remus M.; Kössl M.; Gaese B.H. Characterization of the Perceived Sound of Trauma-Induced Tinnitus in Gerbils. J Acoust Soc Am 130(5): 2827-2834.

Hummel J.; Kössl M.; Nowotny M. Sound-induced tympanal membrane motion in bushcrickets and its relation to the sensory output. J Exp Biol 214: 3596-3604.

Nowotny M.; Gummer A.W. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. J. Acoust. Soc. Am. Volume 130: 3852-3872.

Palghat Udayashankar A.; Kössl M.; Nowotny M. Tonotopically ordered traveling waves in the hearing organs of bushcrickets in-vivo. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 466-472.

Nowotny M.; Weber M.; Palghat Udayashankar A.; Hummel J.; Kössl M. Sound Transduction in the Auditory System of Bushcrickets. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 461-465.

Fleischer M.; Harasztosi C.; Nowotny M.; Zahnert T.; Gummer A.W. Continuum Mechanical Model of the Outer Hair Cell. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 160-165.
2010

Nowotny, M.; Hummel, J.; Weber, M.; Möckel, D.; Kössl, M. Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. J Comp Physiol A 196: 939-945.

2009

Gaese, B. H. ; Nowotny, M. ; Pilz, P. K. D. Acoustic startle and prepulse inhibition in the Mongolian gerbil. Physiology & Behavior 98: 460-466.

2006

Nowotny, M.; Gummer, A.W. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci USA 103: 2120-2125.

Nowotny, M.; Gummer, A.W. Elektromechanische Transduktion: Einfluss der äußeren Haarsinneszellen auf das Bewegungsmuster des Corti-Organs. HNO 54: 536-543.

Gummer, A. W.; Nowotny, M.; Scherer, M. P.; Vete?ník, A. Pulsating fluid motion and deflecting of the stereocilia of the inner hair cells due to the electromechanics of the outer hair cells. In: Nuttall, A.. L.; Ren, T.; Gillespie, P.; Grosh, K.; de Boer, E. (Hrsg.): Auditory Mechanisms: Processes and Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 101?102.

Nowotny, M.; Gummer, A. W. What do the OHCs move with their electromotility? In: Nuttall, A. L.; Ren, T.; Gillespie, P.; Grosh, K.; de Boer, E. (Hrsg.): Auditory Mechanisms: Processes and Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 17?25.
2003

Scherer, M. P.; Nowotny, M.; Dalhoff, E.; Zenner, H. P.; Gummer, A. W. High-frequency vibration of the organ of Corti in vitro.
In: Gummer, A. W. (Hrsg.): Biophysics of the Cochlea: from Molecules to Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 271-277.

2000 Martin T.; Nowotny M. The docodont Haldanodon from the Guimarota mine.- In: Martin T & Krebs B (eds.) Guimarota , a Jurassic Ecosystem. Pfeil Verlag. München.

 

Abstracts

2013 - 2011 - 2010 - 2009 - 2008 - 2006 - 2005 - 2004 - 2003 - 2002 - 2001

Year Title
2013 Hummel J, Kössl M, Nowotny M (2013) Mechanical and neuronal processing of frequencies contained in the conspecific song of Mecopoda elongata. (“Invertebrate Sound and Vibration Meeting 2013”, Glasgow, UK, 22.-26. July 2013).
2011

Nowotny M., Remus M., Kössl M., Gaese B. 2011.Trauma-induced tinnitus in gerbils centers around the induction frequency. In: Santi PA (ed.) Abstracts of the 34th Annual Midwinter Research Meeting., Association for Research in Otolaryngology.# 188

Hummel J., Kössl M., Nowotny M. 2011. Does the auditory nerve activity reflect the tympanal membrane motion in bushcrickets? 8th Göttingen Meeting of the German Neuroscience Society. # T17-8A.

Lang J., Kössl M., Nowotny M. 2011. Temperature dependence of DPOAEs in grasshoppers. 8th Göttingen Meeting of the German Neuroscience Society. # T17-2C.

Hummel, J., Kössl, M.;Nowotny, M. (2011). Functional coupling of tympanal membrane motion and tympanal nerve response. ?Invertebrate Sound and Vibration, 13th International Meeting?.

Remus M., Gaese B., Kössl M., Nowotny M. 2011. Trauma-induced tinnitus in gerbils centers around the induction frequency. 8th Göttingen Meeting of the German Neuroscience Society. # T17-8C.

Udajashankar A.P., Kössl M., Nowotny M. 2011. Auditory mechanics of bushcrickets in-vivo. 8th Göttingen Meeting of the German Neuroscience Society. # T17-4A.

Nowotny, M., Palghat Udayashankar, A., Weber, M., Hummel, J. und Kössl, M. (2011). Sound Transduction in the Auditory System of Bushcrickets.?Mechanics of Hearing 2011, The 11th International
2010

Fleischer, M.; Zahnert, T.; Harasztosi, C.; Nowotny, M.; Baumgart, J.; Gummer, A.W. (2010). ?OHC Somatic Electromechanical Force Coupled Directly to the IHC Stereocilia. Assoc Res Otolaryngol Abs: 670.

Martin, T.; Nowotny, M.; Fischer, M. (2010). New data on tooth replacement in the Late Jurassic docodont mammal Haldanodon expectatus. 70th Anniversary Meeting Society of Vertebrate Paleontology, Program and Abs: 130A

2009

Nowotny, M. ; Möckel, D. ; Weber, M. ; Kössl, M. (2009). ?Sound induced vibration pattern on the tympanal membranes of the bushcricket Mecopoda elongata.? 8th Göttingen Meeting of the German Neuroscience Society: T17-1C.

Gaese, B. ; Nowotny, M. ; Pilz, P. K. D. (2009). ?Acoustic startle response in the wild-type and domesticated Mongolian gerbil? 8th Göttingen Meeting of the German Neuroscience Society: T18-6B.

Gummer, A.W. ; Chiaradia, C. ; Nowotny, M. (2009). OHC Somatic Electromechanical Force Coupled Directly to the IHC Stereocilia.
Assoc Res Otolaryngol Abs: 256.

Chiaradia C. ; Nowotny, M. ; Gummer A.W. (2009). OHC induced vibration pattern of the basilar membrane. In: Cooper, N.P. and Kemp, D.T. (Eds.): Concepts and Challenges in the Biophysics of Hearing. World Scientific, Singapore, New Jersey, London, Hong Kong: 283-287.

2008

Chiaradia, C.; Nowotny, M.; Gummer, A. W. (2008): Deflection of IHC Stereocilia by OHC Somatic Electromotility.
Assoc Res Otolaryngol Abs: 176.

Eckrich, T.; Nowotny, M.; Harasztosi, C.; Scherer, M.; Gummer, A. W. (2008): Impedance Measurements of Isolated Outer Hair Cells. Assoc Res Otolaryngol Abs: 179.

2006

Nowotny, M.; Gummer, A. W. (2006). Influence of electrically-induced mobility of outer hair cells on the organ of Corti motion. Assoc Res Otolaryngol Abs: 997.

2005

Nowotny, M.; Gummer, A. W. (2005). Outer hair cell induced motion of the organ of Corti: Mechanisms of active amplification.

In: Elsner, N. ; Zimmermann, H. (Hrsg.): The Neurosciences from Basic Research to Therapy. Proceedings of the 30th Göttingen Neurobiology Conference 2005. Stuttgart, Georg Thieme: 98.

Nowotny, M.; Gummer, A. W. (2005). Influence of electrically-induced somatic mobility of outer hair cells on the basilar membrane motion. Assoc Res Otolaryngol Abs: 328.

Nowotny, M.; Gummer, A. W. (2005). OHC-induced motion of the organ of Corti. Abstract book of the 42nd Workshop on Inner Ear Biology: O11.

2004

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2004). Impact of outer hair cell electromotility on organ of Corti vibration ? results from an in situ preparation. Assoc Res Otolaryngol Abs: 1002.

2003

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2003). The motion of the subtectorial space and its resulting fluid motion in the guinea pig cochlea. In: Elsner, N.; Zimmermann, H. (Hrsg.): The Neurosciences from Basic Research to Therapy. Proceedings of the 29th Göttingen Neurobiology Conference 2003. Stuttgart, Georg Thieme: 328.

Nowotny, M.; Scherer, M. P.; Zenner, H.-P.; Gummer, A. W. (2003). Stimulus induced volume change in the subtectorial space of the organ of Corti. Assoc Res Otolaryngol Abs: 112.

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2003). Electrically induced motion of the organ of Corti in the guinea-pig cochlea and its possible effect on the response of inner hair cells. Abs 96. Jahrestagung der Deutschen Zoologischen Gesellschaft: P5.

Gummer, A. W.; Nowotny, M.; Scherer, M. P.; Zenner, H.-P.(2003). Laserinterferometrische Untersuchung des subtectorialen Spaltes der Säugetiercochlea. HNO 28: 147.

2002

Gummer, A. W.; Scherer, M. P.; Nowotny, M. (2002). Coupling of electromechanical force into the organ of Corti. Assoc Res Otolaryngol Abs: 720.

Scherer, M. P.; Nowotny, M.; Gummer, A. W. (2002). High frequency vibration modes in the organ of Corti. Assoc Res Otolaryngol Abs: 911.

2001

Nowotny, M.; Martin, T.; Fischer, M. (2001). Dental anatomy and tooth replacement of Haldanodon exspectatus (Docodonta, Mammalia) from the Upper Jura of Portugal. Journal of Morphology 248, 3: 268.